Max NP-completeness made easy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max NP-completeness Made Easy

We introduce a simple technique to obtain reductions between optimization constraint satisfaction problems. The technique uses the probabilistic method to reduce the size of disjunc-tions. As a rst application, we prove the Max NP-completeness of Max 3Sat without using the PCP theorem (thus solving an open question posed in Khanna et al. (1994)). Successively, we show that the \planar" restrict...

متن کامل

Introduction to Np-completeness

We use time-bounded (deterministic and nondeterministic) Turing machines to study computational complexity of decision problems. In this model, a Turing machine has two different halting states, called the accepting state and the rejecting state, respectively. We say that a Turing machine M is bounded by time T if for any input x, M on x always halts in T (|x|) moves (steps). If M is determinis...

متن کامل

NP Completeness , Part 2

Example 1 Undirected Hamiltonian Path (UHP) and Undirected Hamiltonian Circuit (UHC) are the same problems as the corresponding problems for directed graphs, but the new problems are for undirected graphs. Claim 2 Given a polynomial time algorithm for Undirected Hamiltonian Path (UHP) there is a polynomial time algorithm for Directed Hamiltonian Path. 1. A DHP builds the triple (H, p, q), where...

متن کامل

NP-Completeness and Disjoint NP-Pairs

We study the question of whether the class DisjNP of disjoint pairs (A,B) of NPsets contains a complete pair. The question relates to the question of whether optimal proof systems exist, and we relate it to the previously studied question of whether there exists a disjoint pair of NP-sets that is NP-hard. We show under reasonable hypotheses that nonsymmetric disjoint NP-pairs exist, which provi...

متن کامل

Turing Machines , P , NP and NP - completeness

I assume that most students have encountered Turing machines before. (Students who have not may want to look at Sipser’s book [3].) A Turing machine is defined by an integer k ≥ 1, a finite set of states Q, an alphabet Γ, and a transition function δ : Q×Γk → Q×Γk−1×{L, S,R}k where: • k is the number of (infinite, one-dimensional) tapes used by the machine. In the general case we have k ≥ 3 and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical Computer Science

سال: 1999

ISSN: 0304-3975

DOI: 10.1016/s0304-3975(98)00200-x